Two Types of Rationality - Berkeley and Newton

  • Jacek Gurczyński Zakład Logiki i Filozofii Nauki, Instytut Filozofii, UMCS
Keywords: rationality, pragmatism, infinitesimals, classical mechanic

Abstract

This paper discusses the dispute between G. Berkeley and I. Newton concerning the validity of classical mechanics. These two engaged in a discussion about infinitely small quantities --- infinitesimals --- which were used in differential and integral equations by Leibniz and Newton. Infinitesimals were both equal to zero and at the same time different from zero. The standard view is that Newton was right in defending classical mechanics. But if we accept a narrow sense of rationality --- as a procedure conforming to logical rules --- then Berkeley was right, for there are no numbers at the same time equal to and different from zero. The problem of infinitesimals was resolved in the 19th century, when the notion of limit was strictly defined. Seen in the light of this, Berkeley appears as rational, and Newton as pragmatic in his determination to preserve a promising physical theory.

References

Berkeley G (1734), "The Analyst"

Bourbaki N (1980), "Elementy historii matematyki" Warszawa Państwowe Wydawnictwo Naukowe.

Davis PJ and Hersh R (1994), "Świat matematyki" Warszawa Wydawnictwo Naukowe PWN.

Nadel-Turoński T (1976), "Metafory matematyczne w teoriach fizycznych", Poznańskie Studia z Filozofii Nauki. (1), pp. 33-51.

Nadel-Turoński T (1972), "O tak zwanym <> matematyki", Studia Filozoficzne. (2 (75)), pp. 95-102..

Sady W (1990), "Racjonalna rekonstrukcja odkryć naukowych" Lublin Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej.

Struik DJ (1963), "Krótki zarys historii matematyki do końca XIX wieku" Warszawa Państwowe Wydawnictwo Naukowe.

Whitehead AN (1988), "Nauka i świat współczesny" Warszawa Instytut Wydawniczy PAX.

Published
2013-06-30
How to Cite
Gurczyński, J. (2013). Two Types of Rationality - Berkeley and Newton. The Ignatianum Philosophical Yearbook, 19(1), 7-18. https://doi.org/10.5281/zenodo.44460
Section
Peer-reviewed articles