Developing Activities Oriented at Discovering Mathematical Knowledge: Concepts by Preschool and Early School Pedagogy Students
Abstract
The search for teaching methods facilitating more effective learning of mathematics is one of the challenges faced by contemporary education. Even though semantically effectiveness is closer to economic notions, the term can also be applied when assessing the school learning process. In defining what we believe to be the tell-tale signs of effective learning of mathematics, our attention has been drawn to developing skills facilitating a broad application of knowledge specific to this discipline within and also outside of its scope. Guided discovery is a method that enables pupils to construct mathematical knowledge while improving their understanding thereof. The present study aimed to discover the concepts students of preschool and early school education have for constructing guided-discovery lessons to support mathematical learning, as well as their opinions on the attractiveness and usefulness of the suggested solutions. Quantitative and qualitative analyses of student proposed lesson plans and questionnaire results indicate difficulties in designing lessons using this method while recognising their educational value.
References
Abrahamson, D. i Kapur, M. (2018). Reinventing discovery learning: A field-wide research program. Instructional Science, 46(1), 1–10.
Amiyani, R. i Widjajanti, J.B. (2018). The excellence of guided discovery learning on mathematical knowledge-based, skill-based, and attitude. Journal of Physics: Conference Series, 1097.
Babbie, E. (2003). Badania społeczne w praktyce (W. Betkiewicz, tłum.). Wydawnictwo Naukowe PWN.
Bereźnicki, F. (2004). Dydaktyka kształcenia ogólnego. Oficyna Wydawnicza „Impuls”.
Boaler, J. (2016). Mathematical mindsets: Unleashing students’ potential through creative math, inspiring messages and innovative teaching. Jossey-Bass.
Carroll, J. i Beman, V. (2015). Boys, inquiry learning and the power of choice in middle school English classroom. Adolescent Success, 15(1), 4–17.
Clements, D.H. (2001). Mathematics in the preschool. Teaching Children Mathematics, 7(5), 270–275.
Clements, D.H. i Sarama, J. (2009). Learning and teaching early math: The learning trajectories approach. Routledge.
De Corte, E. (2013). Historyczny rozwój myślenia o uczeniu się (Z. Janowska, tłum.). W: H. Dumont, D. Istance, F. Benavides (red.), Istota uczenia się. Wykorzystanie wyników badań w praktyce (s. 60–108). Wolters Kluwer Polska.
Dixon, J.A. (2005). Mathematical problem solving: The roles of exemplar, schema, and relational representations. W: J.I.D. Campbell (red.), Handbook of mathematical cognition. (s. 379–396). Psychology Press.
Dylak, S. (2000). Konstruktywizm jako obiecująca perspektywa kształcenia nauczycieli. W: H. Kwiatkowska, T. Lewowicki i S. Dylak (red.), Współczesność a kształcenie nauczycieli (s. 63–82). Wyższa Szkoła Pedagogiczna Związku Nauczycielstwa Polskiego.
English, L.D. (2004). Promoting the development of young children’s mathematical and analogical reasoning. W: L. English (red.), Mathematical and analogical reasoning of young learners (s. 201–212). Lawrence Erlbaum Associates.
Fauzi, A. i Widjajanti, D.B. (2018). Self-regulated learning: the effect on student’s mathematics achievement. Journal of Physics: Conference Series, 1097.
Frobisher, L. i Threlfall, J. (2005). Teaching and assessing patterns in number in primary years. W: A. Orton A. (red.), Pattern in the teaching and learning of mathematics (s. 84–103). Continuum.
Galant, J. (1987). Dostrzeganie i rozwiązywanie problemów w klasach początkowych. Wydawnictwa Szkolne i Pedagogiczne.
Garrick, R., Threlfall, J. i Orton, A. (2005). Pattern in the nursery. W: A. Orton (red.), Pattern in the teaching and learning of mathematics (s. 1–17). Continuum.
Gopnik, A., Meltzoff, A.N. i Kuhl, P.K. (2004). Naukowiec w kołysce. Czego o umyśle uczą nas małe dzieci (E. Haman i P. Jackowski, tłum.). Media Rodzina.
Gruszczyk-Kolczyńska, E. (red.). (2012). O dzieciach matematycznie uzdolnionych. Książka dla rodziców i nauczycieli. Nowa Era.
Hanum, N. (2018). The difference student learning outcomes using discovery learning and inquiry learning in elementary school. International Journal of Education, 6(1), 1–9.
Jaworski, B. (1994). Investigating mathematics teaching: A constructivist enquiry. Falmer Press.
Kalinowska, A. (2017). Matematyczna aktywność badawcza uczniów klas początkowych. Między koncepcjami naukowymi i potocznymi. Problemy Wczesnej Edukacji, 38(3), 82–101.
Kamaluddin, M. i Widjajanti, D.B. (2019). The impact of discovery learning on students’ mathematics learning outcomes. Journal of Physics: Conference Series, 1320.
Kapur, M. i Toh, P.L.L. (2013). Productive failure: From an experimental effect to a learning design. W: T. Plomp i N. Nieveen (red.), Educational design research – Part B: Illustrative cases (s. 341–355). SLO.
Kirschner, P.A., Sweller, J. i Clark, R.E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.
Krygowska, Z. (1977). Zarys dydaktyki matematyki. Cz. 3. Wydawnictwo Szkolne i Pedagogiczne.
Lazonder, W. i Harmsen, R. (2016). Meta-analysis of inquiry-based learning: Effects of guidance. Review of Educational Research, 86(3), 681–718.
Liljedahl, P.G. (2005). Mathematical discovery and affect: The effect of AHA! Experiences on undergraduate mathematics students. International Journal of Mathematical Education in Science and Technology, 36(2–3), 219–234.
Lockhart, P. (2009). Mathematician’s lament. Bellevue Literary Press.
Lu, J., Bridges, S. i Hmelo-Silver, C.E. (2014). Problem-based learning. W: R.K. Sawyer (red.), The Cambridge handbook of the learning sciences (s. 298–318). Cambridge University Press.
Maarif, S. (2016). Improving junior high school students’ mathematical analogical ability using discovery learning method. International Journal of Research in Education and Science, 2(1), 114–124.
Mason, J., Burton, L. i Stacey, K. (2005). Matematyczne myślenie (P. Amsterdamski, tłum.). Wydawnictwa Szkolne i Pedagogiczne.
Mayer, R.E. (2004). Should there be a three-strikes rule against pure discovery learning? American Psychologist, 59(1), 14–19.
McGarvey, L.M. (2012). What is a pattern? Criteria used by teachers and young children. Mathematical Thinking and Learning, 14(4), 310–337.
Moore, K.D. (2005). Effective instructional strategies: From theory to practice. SAGE Publications.
Okoń, W. (2001). Nowy słownik pedagogiczny. Wydawnictwo Akademickie „Żak”.
Pawlusińska, L. (2021). Kierowane odkrywanie matematyki we wczesnej edukacji. Wydawnictwo Naukowe Uniwersytetu Szczecińskiego.
Pilch, T. i Bauman, T. (2001). Zasady badań pedagogicznych. Strategie ilościowe i jakościowe. Wydawnictwo Akademickie „Żak”.
Sahara, R., Mardiyana, M. i Saputro, D. (2018). Discovery learning with SAVI approach in geometry learning. Journal of Physics: Conference Series, 1013.
Svinicki, M.D. (1998). A theoretical foundation for discovery learning. Advances in Physiology Education, 275(6), S4–S7.
Szmidt, K.J. (2006). Teoretyczne i metodyczne podstawy procesu rozwijania „myślenia pytajnego”. W: W. Limont i K. Nielek-Zawadzka, Edukacja artystyczna a potencjał twórczy człowieka (s. 21–50). Oficyna Wydawnicza „Impuls”, Uniwersytet Mikołaja Kopernika.
Van Joolingen, W. (1999). Cognitive tools for discovery learning. International Journal of Articial Intelligence in Education, 10, 385–397.
Westwood, P. (2008). What teachers need to know about teaching methods. ACER Press.
Yeo, J.B.W. (2017). Development of a framework to characterise the openness of mathematical tasks. International Journal of Science and Mathematics Education, 15, 175–191.
Yuliani, K. i Saragih, S. (2015). The development of learning devices based guided discovery model to improve understanding concept and critical thinking mathematically ability of students at Islamic Junior High School of Medan. Journal of Education and Practice, 6(24), 116–128.
Yurniwati, Y. i Hanum, L. (2017). Improving mathematics achievement of Indonesian 5th grade students through guided discovery learning. Journal on Mathematics Education, 8(1), 77–84.
Zazkis, R. i Liljedahl, P. (2002). Generalization of patterns: The tension between algebraic thinking and algebraic notation. Educational Studies in Mathematics, 49(3), 379–402.
Copyright (c) 2024 Elementary Education in Theory and Practice
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
- When submitting a text, the author declares that he/she is the Author of the article (hereinafter referred to as the “Work”) and:
- he/she owns the exclusive and unlimited copyright to the Work,
- is entitled to dispose of the copyright to the Work.
Declares that it does not infringe any third party copyrights or legal rights.
Declares that there is no conflict of interest.
2. At the same time, the Author grants the Ignatianum University in Cracowa royalty-free, non-exclusive and territorially unlimited licence to use the Work in the following fields of exploitation:
- recording the Work in a hard copy, as well as on a digital or magnetic medium;
- reproduction of the Work using any technique, without limitation of the number of editions or copies;
- distribution of the Work and its copies on any medium, including marketing, sale, lending, and rental;
- introduction of the Work into a computer memory;
- disseminating the Work in information networks, including in the Internet;
- public performance, exhibition, display, reproduction, broadcasting and re-broadcasting, as well as making the Work available to the public in such a way that everyone can have access to it at a time and place of their own choosing;
- within the scope of dependent rights to the Work, including in particular the right to make necessary changes to the Work resulting from editorial and methodical development, as well as to translate the Work into foreign languages;
The licence is granted from the moment of the transfer of the Work to the Ignatianum University in Cracow. The Ignatianum University in Cracow is entitled to grant further sub-licences to the Work within the scope of the right granted. The licence is time-limited and it is granted for a period of 15 years, starting from the date of its granting.
Authors are permitted and encouraged to publish their text online (e.g. in their institution’s repository or on the institution’s website) before or during the submission process as this may lead to beneficial exchanges, as well as earlier and greater citation of the published text (See The Effect of Open Access). We recommend using any of the following portals of research associations:
- ResearchGate
- SSRN
- Academia.edu
- Selected Works
- Academic Search